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LETTER TO THE EDITOR

Mixed-spin Ising model on the union jack lattice

Adam Lipowskit and Tsuyoshi Horiguchi
Department of Computer and Mathematical Sciences, GSIS, Tohoku University, Sendai 980-77,
Japan

Received 30 January 1995

Abstract. We show that the mixed-spin Ising model on the nnion jack lattice with § = % and
§ = 1 spin operators placed on different sublattices is equivalent to the eight-vertex model. Ona
two-dimensional manifold in a parameter space, the model corresponds to the symmetric eight-
vertex model and thus is solvable. We locate exactly a coexistence surface between two ordered
phases of the mixed-spin model. This surface is bounded by a bicritical line with continuously
changing exponents.

Although understood in many respects, two-dimensional Ising models are still intensively
studied and a lot of open problems still remain. Certainly, the behaviour of frusuated
models and models with § > 5 L has not yet been fully elucidated.

Recently, some mixed-spin Ising models have been proposed as possible models of
certain ferrimagnetics [1, 2]. In such models both frustration and a2 higher value of spin
play an important role and approximate methods, which are reliable in other cases, might
even give qualitatively wrong results. This is the case for the model on the square lattice
where Monte Carlo simulations and transfer-matrix calculations [3, 4] ruled out the existence
of the compensation point and the tricritical point which was predicted by the mean-field
approximations [1, 2].

In this letter we consider a mixed-spin Ising model on the unmion jack lattice.
Surprisingly, the presence of the additional interactions simplifies the problem and enables us
to transform the model into a solvable eight-vertex model and examine some of its properties.

The Hamiltonian of this model is written as

H=-h) pupj =y wiS—DY 5 m

where yu; = %1 and S; = %1,0. The operators y; and S; are located on eight- and
four-coordinated sites, respectively (see figure 1). In the following we put Jf, = 1.

The ground-state structure of this model can be easily found by comparing the energies
of the corresponding configurations. The result-is shown in figure 2.

First, Iet us decimate spins S;. Since spins S; interact only with spins u; and
the remaining (after decimation) spins p; are two-state variables, the resulting model is
equivalent to the eight-vertex model with the following weights:

wy = e*#1 1+ 2¢Pcosh(4B)] 0y = e h(1 4 26PP) @)
wy =y = 1+ 2P ws =wg =7 =wg = 1 +2¢*Pcosh(28) (3)
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Figure 2. The ground-state structure of the model (1). In phase I the spins §; can take values
+1 arbiwarily, The full line between phases I and IV is a T = 0 projection of the critical
line (6). .

where 8 = 1/T and we put iz = 1. In equations (2) and (3) we follow the standard
assignment between spin and vertex configurations [5].

One branch of solutions of the eight-vertex model corresponds to the so-called ‘free-
fermion’ case [6]. In this case the weights w; have to satisfy the following equation:

w12 + w304 = W5 + Wy . S0
Substituting the weights (2) and (3) into (4), we obtain that e#P[cosh(28) — 112 = 0 with
the solutions § = 0 or D = --00. Both cases are rather uninteresting since the model (1)

is then trivially equivalent to the § :% Ising model. Let us notice that for the § = %
Ising model on the union jack lattice we can also perform such decimation and the resulting
eight-vertex model satisfies the ‘free-fermion’ condition for arbitrary couplings. Thus one
can easily rederive the results obtained by other more elaborate methods [7, 8].

The second branch of solutions corresponds to the symmetric case [5]. Since in our
model we already have w3 = w4, @s = ws and o7 = ws, thus the symmetric case is
obtained by imposing only one condition: w; = @; or equivalently

e?Ph[1 4 2eFPcosh(4B)] = &4 (1 + 25.69) ) 5)
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This condition describes a 2D manifold in the 3D parameter space (D, Ji, T). It is easy to
realize that real solutions of (5) only exist for —1 < J} < 0. Thus, in the present approach,
the model (1) is unsolvable on the square lattice (i.e. when J; = 0).

On the manifold (5) the vertex model becomes critical when @) = w3 + ws + w7 or
equivalently

{(1 +26°P)[1 +2¢PPcosh(@B)]}* = 3+ 2¢#P[1 + cosh(28)] ©)

where we eliminated J; using (5). The critical line obtained as a solution of (6) is shown
in figure 2 (projection into the T = 0 plane) and in figure 3 (projection into the J; = 0
plane). Along this line critical exponents change continuously. For example, the exponent
v is given as

e 1 4 2e#Pcosh(28)
A T T 2ADY3 (1 + 26#Pcosh(2B))] /2

and is shown in figure 4 as a function of D.
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Figure 3. A J1 =0 projection of the critical line (6).
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Figore 4. The exponent v as a fanction of D.
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Figore 5. The phase diagram of the model (1) for J; = —0.75. The broken curve denotes the
solvable manifold (5). The full and dotted curves denote continuous phase transitions obtained
by the phenomenological renormalization group. Our calculations were performed for pairs of
strips of widths (2, 4) (dotted) and (4, 6) (full). Below the bicritical point (circle} the broken
curve denotes the first-order transition line between phases I and IV.

In the Ising model, as is well known, the condition that the magnetic field vanishes,
actually describes the coexistence line between two phases of opposite magnetization. This
first-order transition line ends at the critical point. The same situation appears in the
model {1). The solvable manifold (5) corresponds to the symmetric eight-vertex model,
1.e. to the model with zero electric field. On the other hand, as is easy to check, in the
ordered phase of the vertex model this manifold crosses the T = 0 plane (of the parameter
space) along the ground-state transition line Jy = —1 — Df4. This enables us to identify
phases on both sides of the manifold (5). Thus we arrive at the following conclusion: in
the ordered phase of the vertex model (i.e. below the critical temperature given by (6)) this
manifold gives the exact location of the first-order transitions between phases I and IV.

It seems plausible that off the coexistence line the ordered phases I and IV undergo a
continuous phase transition to the paramagnetic phase and thus the non-universal critical
point given by (6) is actually a bicritical point. This is confirned by the numerical
calculations using the phenomenological renormalization group [9]. Placing the vertex
model with the weights (2) and (3) on a strip of finite width L we can find the critical point
from the condition that the ratio of the correlation length and the width L is independent of
the size. Although our calculations were not very extensive (L < 6), they cleatly show (see
figure 5} that the critical lines which separate phases I and IV from the paramagnetic phase
indeed meet at the bicritical point. We also calculated the exponent v along the critical lines
and its value is close to unity. This indicates that along these lines the model (1) exhibits
Ising-type critical behaviour. Let us notice that in the ordered phase the solvable manifold
is nearly vertical and thus the critical points (6} are located almost above the line of the
ground-state transitions.

Zero states of the § = 1 spin variable at the centre of the elementary cell can be
interpreted as a non-magnetic impurity. It is already known [10, 11] that when such
impurities are distributed in a certain pericdic manner then the resulting model is equivalent
to the sixteen-vertex model which satisfies the “free-fermion’ condition. Analysis of this
model [10, 11] shows that its critical behaviour is of the Ising type and the ordered
phases are always (except some limiting cases, e.g. T = 0) separated by the paramagnetic
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phase. Our results show that a random, annealed distribution of impurities introduces a
qualitative difference: ordered phases might coexist even at finite temperatures and the
critical behaviour might be non-universal.

The knowledge of the exact location of the coexistence surface and of the bicritical
point can be useful in studying, e.g. crossover phenomena in the model (1) or in testing
some approximate methods. Our analysis can be easily generalized to the case where at the
four-coordinated sites we have arbitrary spin-S variables. We can also consider anisotropic
couplings.

It might also be interesting to notice that represented in terms of two- state variables, the
eight-vertex model has to contain rather peculiar four-body interactions or next-next-nearest
neighbour interactions. We can see that introducing the three-state variables offers a new
representation where only non-crossing interactions appear.

We thank Professor Novotny for sending us his preprint. One of us (AL) is partially
supported by research grant KBN 2 P302 091 07.
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