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LElTER TO THE EDITOR 

Mixed-spin Ising model on the union jack lattice 
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Department of Computer and Mathematical Sciences, GSIS, Tohaku University, Sendai 980-77, 

Received 30 January 1995 . ,  

Abskact. We show that the mked-spin king model on the union jack lanice with S = 1. and 
S = 1 spin operators placed on different sublattices is equivalent to the eight-vertex model. On a 
two-dimensional manifold in a parameter space, the model corresponds to the symmenic eight- 
vertex model and thus is solvable. We locate exaclly a coexistence surface between two ordered 
phaes of the mixed-spin model. This surface is bounded by a bieritical line with continuously 
changing exponents. 

Although understood in many respects, two-dimensional Ising models are still intensively 
studied and a lot of open problems still remain. Certainly, the behaviour of frustrated 
models and models with S > 2 has not yet been fully elucidated. 

Recently, some mixed-spin Ising models have been proposed as possible models of 
certain femmagnetics [l, 21. In such models both frustration and a higher value of spin 
play an important role and approximate methods, which are reliable in other cases, might 
even give qualitatively wrong results. This is the case for the model on the square lattice 
where Monte Carlo simulations and transfer-matrix calculations [3,4] ruled out the existence 
of the compensation point and the tricritical point which was predicted by the mean-field 
approximations 11, 21. 

In this letter we consider a mixed-spin king model on the union jack lattice. 
Surprisingly, the presence of the additional interactions simplifies the problem and enables us 
to transform the model into a solvable eight-veaex model and examine some of its properties. 

The Hamiltonian of this model is written as 

H = - J ~ C ~ ~ ~ ~ - J ~ C P ~ S ~ - D C $  (1) 
where p; = f l  and S; = f l ,  0. The operators pi and Si are located on eight- and 
four-coordinated sites, respectively (see figure 1). In the following we put Jz = 1. 

The ground-state structure of this model can be easily found by comparing the energies 
of the corresponding configurations. The result is shown in figure 2. 

First, let us decimate spins St. Since spins Si interact only with spins pi  and 
the remaining (after decimation) spins pi are two-state variables, the resulting model is 
equivalent to the eight-vertex model with the following weights: 

wl = e2flJ’[l + 2eflDcosh(4B)] wz = e-*flJ2(1 + 2eflD) (2) 

(3) og = w4 = 1 +2e@ ~ 0 5  = 06 = y = ws = 1 + 2@Dcosh(2p) 

t Permanent address: Deparrment of Physics, A Mkkiewicr University. Pomah Poland. 
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Figure 1. Elementary cell of the union jack lattice. Eight- 
and fourscordinated sites are denoted as open and full circles, , 
respectively. 
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Figure 2 Ihe ground-state structure of the model (1). In phase I11 the spins S; can take values 
zt1 aditrarily. The full line between phases I and N is a T = 0 projecdon of the critical 
line (6). 

where j3 = 1/T and we put kg = 1. In equations (2) and (3) we follow the standard 
assignment between spin and vertex configurations [5].  

One branch of solutions of the eight-veItex model corresponds to the so-called ‘free- 
fermion’ case [61. In this case the weights 0; have to satisfy the following equation: 

(4) 
Substituting the weights (2) and (3) into (4), we obtain that eflD[cosh(2p) - 11’ = 0 with 
the solutions 6 = 0 or D = -W. Both cases ace rather uninteresting since the model (1) 
is then trivially equivalent to the S = $ king model. Let us notice that for the S = $ 
Ising model on the union jack lattice we can also perform such decimation and the resulting 
eight-vertex model satisfies the ‘free-fermion’ condition for arbitrary couplings. Thus one 
can easily rederive the results obtained by other more elaborate methods [7, 81. 

The second branch of solutions corresponds to the symmetric case 151. Since in our 
model we already have 03 = 0 4 ,  0 s  = 0 6  and y = os, thus the symmetric case is 
obtained by imposing only one condition: 01 = o;! or equivalently 

0 1 %  + 0 3 0 4  = 0 5 0 6  + Y W 8 .  

ezfl’I[l +ZeflDcosh(4j3)] = e-2pJt(1 +%aD). (5) 
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This condition describes a 2~ manifold in the 3~ parameter space ( D ,  JI, T). It is easy to 
realize that real solutions of (5) only exist for -1 < JI < 0. Thus, in the present approach, 
the model (1) is unsolvable on the square lattice (i.e. when JI = 0). 

On the manifold (5) the vertex model becomes critical when w1 = y + ws + q or 
equivalently 

((1 + Q D ) [ 1  +2epDcosh(4~)]}1'2 =3+2epo[1 +cosh(2+'3)] (6) 

where we eliminated J1 using (5). The critical lime obtained as a solution of (6) is shown 
in figure 2 (projection into the T = 0 plane) and in figure 3 (projection into the 31 = 0 
plane). Along this line critical exponents change continuously. For example, the exponent 
U is given as 

and is shown in figure 4 as a function of D. 

Figure 3. A 31 = 0 projection of the critical line (6). 
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Figure 4. The exponent v as a function of D. 



U64 Letter to the Editor 

Figure 5. The phase diagram of Ihe model (1) for 31 = -0.75. The broken curve denotes the 
solvable manifold (5). The full and dotted e w e s  denote continuous phase transitions obtained 
by the phenomenological renormalization svoup. Our calculations were performed for pain of 
strip of widths (2, 4) (dotted) and (4, 6) (full). Below the bicriticd point (circle) the broken 
curve denotes the first-order transition line between phases I and N. 

In the king model, as is well known, the condition that the magnetic field vanishes, 
actually describes the coexistence line between two phases of opposite magnetization. This 
first-order transition line ends at the critical point. The same situation appears in the 
model (1). The solvable manifold (5) corresponds to the symmetric eight-vertex model, 
i.e. to the model with zero electric field. On the other hand, as is easy to check, in the 
ordered phase of the vertex model this manifold crosses the T = 0 plane (of the parameter 
space) along the ground-state transition line .I1 = -1 - D / 4 .  This enables us to identify 
phases on both sides of the manifold (5). Thus we arrive at the following conclusion: in 
the ordered phase of the vertex model (i.e. below the critical temperature given by (6)) this 
manifold gives the exact location of the first-order transitions between phases I and IV. 

It seems plausible that off the coexistence line the ordered phases I and N undergo a 
continuous phase transition to the paramagnetic phase and thus the non-universal critical 
point given by (6) is actually a bicritical point. This is confirmed by the numerical 
calculations using the phenomenological renomahiation group [9]. Placing the vertex 
model with the weights (2) and (3) on a strip of finite width L we can find the critical point 
fiom the condition that the ratio of the correlation length and the width L is independent of 
the size. Although our calculations were not very extensive ( L  Q 6). they clearly show (see 
figure 5 )  that the critical lines wpch separate phases I and IV from the paramagnetic phase 
indeed meet at the bicritical point. We also calculated the exponent v along the critical lines 
and its value is close to unity. This indicates that along these lines the model (1) exhibits 
king-type critical behaviour. Let us notice that in the ordered phase the solvable manifold 
is nearly vertical and thus the qritical points (6) are located almost above the line of the 
ground-state transitions. 

Zero states of the S = 1 spin variable at the centre of the elemen- cell can be 
interpreted as a non-magnetic impurity. It is already known [lo, 111 that when such 
impurities are distributed in a certain periodic manner then the resulting model is equivalent 
to the sixteen-vertex model which satisfies the ‘freefermion’ condition. Analysis of this 
model [IO, 111 shows that its critical behaviour is of the king type and the ordered 
phases are always (except some limiting cases, e.g. T = 0) separated by the paramagnetic 



Letter to the Editor L265 

phase. Our results show that a random, annealed distribution of impurities introduces a 
qualitative difference: ordered phases might coexist even at finite temperatures and the 
critical behaviour might be non-universal. 

The knowledge of the exact location of the coexistence surface and of the bicritical 
point can be useful in studying, e.g. crossover phenomena in the model (1) or in testing 
some approximate methods. Our analysis can be easily generalized to the case where at the 
four-coordinated sites we have arbitrary spin-S variables. We can also consider anisotropic 
couplings. 

It might also be interesting to notice that represented in terms of two-state variables, the 
eight-vertex model has to contain rather peculiar four-body interactions or next-next-nearest 
neighbour interactions. We can see that introducing the three-state variables offers a new 
representation where only non-crossing interactions appear. 

We thank Professor Novotny for sending us his preprint. One of us (AL) is partially 
supported by research grant KBN 2 DO2 091 07. 
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